Permutation Testing Improves Bayesian Network Learning

نویسندگان

  • Ioannis Tsamardinos
  • Giorgos Borboudakis
چکیده

We are taking a peek “under the hood” of constraint-based learning of graphical models such as Bayesian Networks. This mainstream approach to learning is founded on performing statistical tests of conditional independence. In all prior work however, the tests employed for categorical data are only asymptotically-correct, i.e., they converge to the exact p-value in the sample limit. In the present paper we develop, evaluate, and compare exact tests, based on standard, adjustable, and semi-parametric Monte-Carlo permutation testing procedures appropriate for small sample sizes. It is demonstrated that (a) permutation testing is calibrated, i.e, the actual Type I error matches the significance level α set by the user; this is not the case with asymptotic tests, (b) permutation testing leads to more robust structural learning, and (c) permutation testing allows learning networks from multiple datasets that are not-identically distributed (named the Bayesian Network Meta-Analysis problem); in contrast, asymptotic tests may lead to erratic learning behavior in this task (error increasing with total samplesize). The semi-parametric permutation procedure we propose is a reasonable approximation of the basic procedure using 5000 permutations, while being only 10-20 times slower than the asymptotic tests for small sample sizes. Thus, this test should be practical in most graphical learning problems and could substitute asymptotic tests. The conclusions of our studies have ramifications for learning not only Bayesian Networks, but other graphical models based on the same approach, such as Partially Oriented Anscestral Graphs (PAGs) and related causal-based variable selection algorithms, such as HITON. The results and code are available at mensxmachina.org .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis

‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...

متن کامل

The modeling of body's immune system using Bayesian Networks

In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

A Hypothesis Test for Equality of Bayesian Network Models

Bayesian network models are commonly used to model gene expression data. Some applications require a comparison of the network structure of a set of genes between varying phenotypes. In principle, separately fit models can be directly compared, but it is difficult to assign statistical significance to any observed differences. There would therefore be an advantage to the development of a rigoro...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010